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1. Introduction

The development of the field of x-ray absorption fine structure over the last 30 years
has resulted in a dramatic improvement in the quality of experimental XAFS and data
analysis. This more rigorous data analysis also requires more quantitative estimates of
the uncertainties in the results of the analysis. The Standards and Criteria committee has
developed a series of recommendations to assist the community to determine reliable es-
timates of uncertainties in experimentally derived results. It also encourages the inclusion
in any publication of an explanation or citation of how these uncertainties were obtained.
The committee hopes that the adoption of a common terminology and methods of data
analysis and error reporting will enhance the ability of x-ray spectroscopists to compare
results from different groups, beamlines, and software packages.

The Standards and Criteria Committee of the IXS has been developing these recom-
mendations for many years. In 1988 and 1990, independent workshops were held dealing
with this topic and related matters. The reports of these workshops suggested certain
procedures to follow for theory, data acquisition, data analysis, and reporting require-
ments. Subsequently the IXS was formed, and created the Standards and Criteria Com-
mittee which focussed on development of recommendations regarding error estimation
and reporting. In 1998 and 1999 meetings of the S&C Committee considered drafts of
this report. In the 2000 S&C meeting this report was adopted by the S&C commit-
tee and submitted to the IXS Executive Committee for consideration of adoption as a
policy of the IXS. The report makes several specific recommendations to standardize
the reporting of errors. Supplementary references may be found on the IXS home page
(http://ixs.csrri.iit.edu/) under Education and Dissemination.

The intent of this report is to present to the IXS and its members the general prin-
ciples for systematizing and standardizing the reporting of the uncertainties associated
with experimental results derived from XAFS measurements. The guiding principle is
general enough to cover the procedures used by most groups, even if they use methods for
assessing errors that differ from those recommended here. The specific recommendations
are intended for the majority of groups who use standard codes and who wish to use stan-
dardized procedures. The recommendations made here represent the initial attempt by the
IXS to standardize error reporting. Further refinements are expected, particularly with
regard to the estimation of systematic errors, and so refinements and improvements of the
procedures recommended here are to be expected in the future. This is also a somewhat
technical document since it is being used to justify the basis for these recommendations.
The S&C committee intends to develop a separate document demonstrating how to use
these criteria in the context of a particular example of data analysis.
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2. General Concepts

The general principle that should apply to all quantitative results derived from XAS
measurements represents the starting point for this report and is as follows:

General Principle: Reports of all quantitative results that are derived
from XAS measurements must be accompanied by an estimate of the
uncertainty and a description or a citation that explains the basis for the
uncertainty.

For a few groups that have developed their own methods, particularly if they use analysis
methods that are different from the general fitting techniques assumed here, this means
that they must explain clearly what they have done or refer readers to the published liter-
ature explaining their methods. Most groups are not involved in developing new analytical
methods and rely on standard codes to provide their data analysis. It is the intention of
the specific recommendations that will be made below to provide these groups with an
understanding of and justification for these specific procedures and, also, to encourage the
developers of analysis codes to modify their error assessment procedures to be consistent
with these recommendations.

The starting point for any error assessment is a model for evaluating the confidence
limits. Several closely related formulations have been used by most analytical codes. It
is proposed here that confidence limits can be evaluated from a functional of the generic
form

(∆χ)2 = W
N

∑

i=1

|Datai −Modeli|2/ε2
i . (1)

Here N is the number of data points in the fitting range, W is a dimensionless factor
described below, and εi is the measurement uncertainty for the i-th data point. This
equation applies to both non-k-weighted data and k-weighted data, provided the data,
model, and errors are weighted in the same manner. The functional (1) is analogous, but is
not identical, to the standard statistical χ2 function. The following essential points should
be borne in mind:

1. The points Datai and Modeli may be represented in E, k, or R-space. In each case
the measurement uncertainty εi should be calculated and normalized accordingly,
as discussed below.

2. For R-space fits W = Nidp/N , where Nidp is the number of statistically independent
data points, and N is the number of complex data points contained within the range
of the fit.

3. For back transformed k- and R-space fits, W = Nidp/N , and Nidp is the num-
ber of statistically independent data points, which is approximately given by
Nidp = 2∆k∆R/π, rounded off to the nearest integer. [L. Brillouin, “Science and
Information Theory”, Academic Press, New York, 1962; E. O. Brigham, “The Fast
Fourier Transform”, Prentice-Hall, Englewood Cliffs, NJ, 1974]. Nidp is referred to
by Brillouin as the degrees of freedom in the signal. Here ∆k and ∆R are the ranges
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in k- and R-space respectively over which there is useful data. If the transform or fit
range extend beyond where there is meaningful data above the noise, then the limit
for the interval that should be used in calculating the number of independent points
is the limit of data. For example, if one has a Fourier transform of the data from
an amorphous material that contains one shell whose amplitude (signal) is negligi-
ble relative to the noise above 2.5 Å, the number of independent points cannot be
increased by extending an R-space filter up to a higher R. Typically, for analysis
from Fourier transforms for a single shell, the k-space range is about 10 Å−1 and the
R-space interval is about 2 Å giving a value for Nidp of 13. This is generally viewed
as a conservative number and should be used for guidance only in estimating the
maximum number of fitting parameters that can be used (see below).

4. For E-space (raw data) fits, W may be taken as 1.0. In this case, intrinsic limita-
tions on the number of adjustable parameters become apparent through analysis of
the covariance matrix. In ab initio fitting it should be stressed that these intrinsic
limits are the same as in k- and r-space fitting, whether Fourier filtered or not. The
energy range for the fit determines a ∆k, and the number of shells included in the
fit determines a ∆R, which together limit the number of parameters that can be
determined.

5. The r.m.s. measurement error ε may be used in Eq. (1) instead of the individual εi:

ε2 =
∑

i

ε2
i /N. (2)

6. With (∆χ)2 defined as in Eq. (1), a fit can be considered acceptable when (∆χ)2 ∼ ν,
where ν = Nidp − P is the number of degrees of freedom in the fit. P is the number
of parameters used in the fit. If the final results are dependent upon several stages
of fitting then P should be the maximum number of parameters used in the analysis
process. It should be noted stressed that a discretely stepped variable is still counted
as a variable.

Confidence limits for the fit parameters can be estimated from Eq. (1) with one of two
methods:

a. If the covariance matrix [C] for the fit is available, the uncertainty δPj in the j-th
independent parameter Pj may be calculated as

δPj =
√

Cjj , (3)

where Cjj is the j-th diagonal element of the covariance matrix.

b. When the covariance matrix is not available, the confidence limit δPj should be esti-
mated by varying the parameter Pj away from its optimal value while optimizing all
other parameters until (∆χ)2 increases by 1.0 above its minimum value. The impor-

tance of optimizing all other parameters while varying Pj cannot be overemphasized.
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The methods (a) and (b) are completely equivalent. In order to obtain consistent
results it is essential that the normalization of the (∆χ)2 be precisely as in Eq. (1). The
use of any other definition for (∆χ)2 will yield confidence limits that are not directly
compatible with the recommendations of this report.

Additional insight on the reliability of the fit can be gained by inspecting the correla-
tion matrix for the fit. The correlation coefficient between the i-th and j-th independent
parameters may be calculated as

rij = Cij/
√

CiiCjj, (4)

where the C’s are the respective elements of the fit covariance matrix. The correlation
coefficient takes values in the range [-1,1], and describes the interdependent effect of
the i-th and j-th parameters on (∆χ)2. A positive correlation coefficient indicates that
the increase in (∆χ)2 caused by increasing one parameter from its best-fit value can be
compensated to some degree by increasing the other parameter. A negative correlation
coefficient indicates that the increase in (∆χ)2 caused by increasing one parameter from
its best-fit value can be compensated to some degree by decreasing the other parameter.
The degree of compensation is roughly equal to the magnitude of rij. As a general rule-of-
thumb, |r| = 0.3 and |r| = 0.7 are indicative of weakly and strongly correlated parameters,
respectively.

Recommendation 1: Use Eq. (1) as a standard definition for (∆χ)2, and
Eq. (3) as a standard method for estimating confidence limits for the fit
parameters.

When the errors εi are normally distributed the confidence limits calculated with either
definition will correspond to a significance level of 68.3 percent. The use of other statistical
confidence levels, e.g., 95 percent, 99.9 percent, or “joint confidence intervals”, is also
acceptable, in which case Eq. (3) should be modified accordingly. This can be done by
multiplying the confidence limit δPj with an appropriate scaling coefficient, as tabulated
for instance in “Numerical Recipes: The Art of Scientific Computing”, William Press,
et al.; Cambridge University Press, 1986. When the errors are not normally distributed,
the precise confidence level corresponding to Eq. (3) should be determined with explicit
Monte Carlo simulations if the probability distribution of the error εi is known.

It is important that criterion (6) noted above, (∆χ)2 ∼ ν, be satisfied. Significant
deviation in either direction, i.e., (∆χ)2 � ν or (∆χ)2 � ν, should be considered as
an indication that the estimate for the error ε in Eq. (1) is inadequate. Suggestions for
dealing with such situations are provided in Section 4.

3. Statistical Errors

The error in any measurement has a statistical and a systematic component. The first
step in estimating the total error should always be to estimate the statistical component.

Statistical errors result from photon counting statistics, fluctuations in the position
and intensity of the photon beam, mechanical instabilities in the beamline, electronic
noise, and other factors. The distinguishing feature of statistical errors is that they vary
randomly, both in sign and magnitude. As a result the statistical error averages out to
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zero, and can be made arbitrarily small in any particular measurement by acquiring more
data and/or the use of longer integration times. The estimation of the statistical error is
fairly straightforward, and several methods can been used.

1. Subtracting a smoothed function χ′ from the background-subtracted experimental
χ data. The statistical component of the error may then be calculated for each point
as

εstatistical = χi − χ′

i, (5)

where the index i in εstatistical has been dropped for clarity. The average statistical
error should be estimated from the r.m.s. value of (5) over data segments with
similar statistical weight, e.g., over segments with a constant integration time. The
smoothed data χ′ may be obtained either by smoothing with a low-order polynomial,
or with low-pass Fourier filtering.

2. From the r.m.s. amplitude of the R-space transform in a region devoid of structural

features. A commonly used range is between 15 and 25 Å. If the statistical noise is
truly white, the amplitude of its spectrum in R-space can be adequately approx-
imated by a single number, εR, which is related to the r.m.s. noise amplitude in
k-space, εk, by Parseval’s theorem:

εk = εR

√

π(2w + 1)

δk(k2w+1
max − k2w+1

min )
. (6)

Here εR is the r.m.s. noise amplitude in the k-weighted R-space spectrum, εk is the
r.m.s. noise amplitude in the unweighted k-space spectrum, w is the k-weight of the
transform, the transform range is [kmin,kmax], and δk is the spacing of the points in
k-space. The above formula assumes that an FFT with equidistant k-space points is
used, and the forward and back transforms are normalized by

√

δk/π and
√

δr/π,
respectively, which is a common XAFS convention. A similar relationship between
the r.m.s. amplitudes of the k-space and r-space noise exists for non-equidistant
discrete Fourier transforms, but cannot be expressed in compact closed form. It
should be noted that Eq. (6) estimates the r.m.s. noise amplitude over the entire k-
range used in the FFT, and it is impossible to account for effects such as the possibly
different statistical quality of data segments, e.g., due to differing integration times.
It is also not possible to estimate the error point-by-point, as in Eq. (5).

3. On the basis of Poisson statistics from the raw absorption data. For example, the
statistical error for transmission data may be calculated on a point-by-point basis
from

ε2
statistical = 1/N0 + 1/N, (7)

where N0 and N are the actual number of photon counts (not the inte-
grated “counts” from voltage to frequency converters; for more information on
determining ion chamber currents see tutorial documents at IXS home page
(http://ixs.csrri.iit.edu/) that are detected for each data point by the I0
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and I chambers, respectively. Once again the point index i has been dropped from
Eq. (7) for clarity. The corresponding formula for fluorescence yield data is

ε2
statistical = (Nf/N0)

2(1/N0 + 1/Nf). (8)

The average statistical error should be estimated from the r.m.s. value of Eq. (7) or
Eq. (8) over data segments with similar statistical weight, e.g., over segments with
a constant integration time.

4. By processing a number of independent scans (or independent partial sums of scans)
in parallel and calculating the spread in the final results. It is convenient to also
include the total sum in this process and to estimate the statistical error as

ε2
i =

1

M(M − 1)

M
∑

j=1

(χ
(j)
i − < χi >)2, (9)

where M is the number of independent scans (or partial sums) χ(j) being pro-
cessed, and <χ> is the total sum. The normalization pre-factor in Eq. (9) must be
1/M(M − 1) to ensure that the results of this estimate be representative of the un-
certainty in <χ> (as opposed to the spread within the set of measurements {χ(j)}).
Only then will the estimate from Eq. (9) be directly comparable to those obtained
with Eqs. (5-8).

When post-background subtraction methods are used (Eqs. 5-6, 9), it should be verified
that the interpolation often used to place the data on a constant-k grid does not sig-
nificantly alter the noise level. In addition, some background-removal programs perform
smoothing of the data, which could drastically alter the noise levels. The presence of
smoothing (either intentional, or as an artifact of the numerical procedures used) can be
tested with synthetic data to which a known amount of noise has been added prior to
background subtraction.

The number of scans needed for a reliable estimate of the upper limit of εstatistical

is fairly low, and may be estimated with standard statistical methods. The following
relationships hold for a set of measurements {y1,..,yM} drawn from a normal distribution
with a mean µ and variance σ2:

< y >= µ± tα/2ε, B1−α/2 ≤ s/σ ≤ Bα/2. (10)

Here M is the number of measurements, <y> =
∑

i yi/M is the estimated mean, s2 =
∑

i(yi−<y>)2/(M − 1) is the estimated variance, ε = s/
√

M is the standard error of the
set of M measurements, 1 − α is the desired confidence level, and tα/2 and the B’s are
constants tabulated in many statistical textbooks and in the appendix.

For example, for a set of 4 measurements (M = 4) it is possible to state with 95 percent
confidence (α = 0.05) that

µ =< y > ± 3.18(s/2), 0.27σ ≤ s ≤ 1.76σ, (11)

i.e., even after four measurements it is possible to place an upper limit of 3.7s on the true
value of σ with 95 percent confidence. When using Table I (Appendix) in conjunction
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with Eq. (10) it is important to note that the statistical error εstatistical estimated with
Eqs. (5-9) from the average of M scans <χ> will be approximately equal to s/

√
M , not s.

Inspection of Table I in the appendix also indicates that in this particular example there
is very little to be gained from performing more than 15 scans as far as the precision of

the estimate for σ is concerned.
Once an estimate for εstatistical is available it can be substituted into Eq. (1), and best-

fit parameter values and their confidence limits can be estimated with the procedures
outlined in Section 2 with ε = εstatistical. If the condition (∆χ)2 ∼ ν is satisfied it may
be assumed that the error ε is dominated by the statistical component and the estimated
confidence limits adequately represent the uncertainty in the best-fit parameter values.
It should be noted that this will generally not be the case for the majority of XAFS
data acquired and analyzed today, particularly for high quality transmission data from
concentrated standards where the statistical error is small.

The case (∆χ)2 � ν corresponds to a situation where the calculated εstatistical over-
estimates of the total error ε. Since by definition εstatistical = ε, this condition is most
likely the result of errors in the implementation of Eqs. (5-9) used by the experimenter.
Suggestions for dealing with the case (∆χ)2 � ν are provided in next section.

4. Systematic Errors

The most common indication that the data analysis is affected by systematic errors is
that (∆χ)2 � ν when ε = εstatistical is used in Eq. (1). This will most likely be the case
for the majority of XAFS data acquired and analyzed today. Systematic errors, which
are introduced both during acquisition and analysis of EXAFS data, arise from a large
number of sources that are discussed in more detail in the 2000 Report of the Standards
and Criteria Committee in the section of the Error Analysis Group. Some of the more
common sources of acquisition-related systematic errors include sample inhomogeneities,
radiation damage, thickness and particle size effects, insufficient suppression of higher
harmonics in the monochromatized photon beam, detector nonlinearity, glitches (both
monochromator and sample-related), and improper sample alignment. Analysis-related
errors include: systematic modifications of the amplitude of the EXAFS oscillations caused
by improper pre-edge background subtraction and/or normalization to “unit step height”;
imperfect references (both experimental and ab initio); improper determination of S2

0

and/or improper energy-dependent normalization when ab initio references are used; and
technical errors during pre-processing of the data. While some types of systematic error
may be eliminated through good data acquisition and analysis practices (e.g., harmonics,
alignment, sample preparation), others are often unavoidable (e.g., imperfect standards,
certain types of glitches, inadequate energy-dependent normalization). Further work is
needed to estimate the magnitude and distribution of the unavoidable systematic errors,
e.g., through round-robin type measurements of well-characterized samples on various
beamlines around the world.

A clear distinction needs to be made between identifiable and well-characterized
sources of systematic error, such as thickness effects, self-absorption effects, energy-
dependent normalization, and inadequate structural models, and poorly understood sys-
tematic errors, such as those listed in the previous paragraph. The former sources of error
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are calculable, must be corrected for, and should not be included in the estimate for ε.
At the present time the magnitude of the systematic error in a “typical” XAFS experi-

ment is not known. Planned future activities of the IXS Standards and Criteria committee
include round-robin type measurements at various XAFS beamlines around the world and
modeling of various analytical procedures. The goal of these activities will be to determine
the magnitude and distribution of the major systematic errors. The following procedure
is proposed as an interim solution:

1. Confidence limits should be initially estimated with ε = εstatistical as described in
Section 2.

2. If, as is often the case, it is found that (∆χ)2 � ν after step 1, then confidence limits
should then be rescaled by a constant factor f , which the experimenter believes is
a fair representation of the systematic error in their experiment or data analysis.

3. The values of (∆χ)2, Nidp, ν, εstatistical and the scaling factor f should be disclosed
in all published results.

Recommendation 2: Systematic errors are important in much of the XAFS
data acquired and analyzed today. While standardized methods for es-
timating the magnitude of systematic errors are not presently available,
their effect should not be ignored. One possible method for treating
systematic errors is given above. Whatever the method chosen by the
experimenter, enough details should be disclosed in all published work to
allow an independent evaluation of the reliability of the procedures used
to estimate the systematic error.

While not rigorously correct, the solution outlined above is consistent with accepted prac-
tices in other fields, e.g., x-ray diffraction, and allows experimenters to provide some es-
timate of the uncertainty in the fit results. The procedure is equivalent to assuming that
the systematic error, constant throughout the fit range, is added in quadrature to the
statistical error, and scales roughly as (f 2− 1)ε2

statistical, where f is the scaling factor used
in step 3 above.

5. Additional information

Determining the fit quality when the contribution of systematic effects to the total error
is significant, e.g., when (∆χ)2 � ν, is not easy. For example, it is not clear how to
distinguish fits that are truly bad (in the sense of inadequate models) from those simply
dominated by systematic errors. These two situations may be differentiated to some extent
by examining an R-factor, defined as

R2 = 100×
∑N

i=1 |Datai −Modeli|2
∑N

i=1 |Datai|2
%. (12)

As long as the signal-to-noise ratio (S/N) of the data is good, the R-factor of adequate
fits can be expected to be not more than a few percent, which is thought to be the typical
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accuracy of modern ab initio EXAFS codes. It is therefore desirable that analysis codes
provide users with both R (Eq. 13) and S/N .

The signal-to-noise ratio should be estimated by dividing the fit range into regions of
similar statistical weight, e.g., regions acquired with a certain integration time, estimating
εstatistical for each region with Eqs. (5-9), and calculating a “local” S/N value for each
region:

(S/N)m ≈
1

M

√

√

√

√

M
∑

i=1

|Datai|2/ε2
statistical . (13)

Here M is the number of data points in the corresponding m-th region, and the sum is
over data points in that region only. The overall S/N ratio quoted for the entire range
should be min{(S/N)m}, the smallest value obtained from Eq. (13).

6. Reporting Requirements

Recommendation 3: Certain information should be provided to allow an
independent estimate of the reliability of the confidence limits quoted
in published work. The level of disclosure should be appropriate to the
importance of the XAFS results to the case being presented. The report-
ing requirements listed below should be included as appropriate when
XAFS is one of the primary experimental methods used to support the
conclusions of the work being proposed for publication.

Consistent with the general principle proposed in this report, it is essential that certain
information be disclosed in order to adequately describe the basis for reporting of re-
sults and estimating errors from XAFS data. Information that should be included, as
appropriate, may include:

1. The type of functional being minimized. The definition in Eq. (1) has been proposed
in order to develop a more standardized approach for the XAFS community.

2. The function used to model the data.

3. The types of standards for scattering amplitudes and phases, e.g., empirical or ab

initio. The procedure used to calibrate or check the standards and to determine S2
0

should be described.

4. The fitting space. This may be E-space (raw absorption data µ(E)), k-space (raw
EXAFS data χ(k) without Fourier filtering), R-space (Fourier-transformed EXAFS
data), or back-transformed k-space (Fourier-filtered k-space data, sometimes re-
ferred to as q-space).

5. K-weighting of the data, if applicable.

6. Fits in R-space and k-space should provide both the range of the fit and the range
of the transform.
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7. Number of parameters in the fit, and any externally imposed, should be given. The
parameter count should include all parameters varied at any stage of the refinement
process, not just those varied during the last stage. An estimate for the maximum
number of parameters that can be extracted from the analysis should be included
and justified.

8. The best-fit value of (∆χ)2. An R-factor should be identified and its value provided.

9. The procedure used to estimate the confidence limits should be described. The
confidence limits represent an estimate of the standard error.

10. Parameter correlations for multi-shell fits, particularly those outside the usual
(N ,σ2) and (R,E0) groups, should be described if they have significantly affected
the specific results being presented.

Appendix — Statistical Tables

M B0.025 B0.975 t0.025 M B0.025 B0.975 t0.025 M B0.025 B0.975 t0.025

2 2.23 0.03 12.71 10 1.45 0.54 2.26 18 1.33 0.67 2.10
3 1.92 0.16 4.30 11 1.45 0.57 2.23 19 1.32 0.68 2.09
4 1.76 0.27 3.18 12 1.41 0.59 2.18 20 1.32 0.68 2.09
5 1.67 0.35 2.78 13 1.39 0.61 2.16 21 1.31 0.69 2.08
6 1.61 0.41 2.57 14 1.38 0.62 2.14 22 1.30 0.70 2.07
7 1.55 0.45 2.45 15 1.38 0.64 2.13 23 1.30 0.71 2.07
8 1.52 0.49 2.37 16 1.36 0.65 2.12 24 1.29 0.71 2.06
9 1.48 0.52 2.31 17 1.34 0.66 2.11 25 1.29 0.72 2.06
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